0 of 10 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
quiz en cours de chargement…
You must sign in or sign up to start the quiz.
Vous devez d’abord complété le suivant :
0 réponse(s) correcte(s) sur 10
Durée du quiz :
Temps écoulé
Total : 0/0 (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
Soit \( A \) et \( B \) deux matrices appartenant à \( \mathcal{M}_{3,2}( \mathbb{R}) \).
Indiquer les affirmations exactes.
\( \begin{pmatrix}
1 & 0 & 1\\
2 & -1 & 1
\end{pmatrix} \begin{pmatrix}
1 & -1 \\
0 & -2 \\
-1 & 1
\end{pmatrix} = \begin{pmatrix}
a & b \\
c & d
\end{pmatrix} \)
Que valent \( a,b,c,d \) ?
\( a= \)
\( b= \)
\( c = \)
\( d= \)
\( \begin{pmatrix}
7 & -1 & 2\\
-5 & 0 & 1 \\
2 & 1 & 3
\end{pmatrix} – \begin{pmatrix}
2 & 1 &-1\\
1 & 0 & -1\\
-1 & 1 & -1
\end{pmatrix} = \begin{pmatrix}
a & b & c \\
d & e & f\\
g & h & i
\end{pmatrix} \)
Que valent \( a,b,c,d,e,f,g,h,i \) ?
\( a= \)
\( b= \)
\( c = \)
\( d= \)
\( e= \)
\( f= \)
\( g = \)
\( h= \)
\( i= \)
\(\begin{pmatrix}
2 \\ 0 \\ -1 \\ 1
\end{pmatrix} \begin{pmatrix}
2 & -1 & 1 & 3
\end{pmatrix} \)
\( \begin{pmatrix}
2 & -1 & 1 & 3
\end{pmatrix} \begin{pmatrix}
2 \\ 0 \\ -1 \\ 1
\end{pmatrix} = a \)
\( a= \)
\(\begin{pmatrix}
2 \\ -1
\end{pmatrix} \begin{pmatrix}
-3 & -2
\end{pmatrix} = \begin{pmatrix}
a & b\\
c & d
\end{pmatrix} \)
Que valent \( a,b,c,d \) ?
\( a= \)
\( b= \)
\( c = \)
\( d= \)
Si \( A = \begin{pmatrix}
3 & 1 &2\\
-1 & 1 & 3
\end{pmatrix} \) alors \( {}^t \! A = \begin{pmatrix}
a & b \\
c & d\\
e & f
\end{pmatrix} \)
\( a= \)
\( b= \)
\( c = \)
\( d= \)
\( e = \)
\( f= \)
Si \( M = \begin{pmatrix}
a & b\\
c & d
\end{pmatrix} \) alors :
Si \( D = \begin{pmatrix}
a & 0 & 0\\
0 & b & 0 \\
0 & 0 & c
\end{pmatrix} \) alors \( D^3 = \begin{pmatrix}
a^3 & 0 & 0\\
0 & b^3 & 0 \\
0 & 0 & c^3
\end{pmatrix} \).
Si \( D \) et \( D’ \) sont deux matrices diagonales, alors \( DD’ = D’ D \).