

## **ESCP**

## Filière ECS

(Énoncé)

Les variables aléatoires introduites sont supposées définies sur un même espace probabilisé  $(\Omega, \mathcal{A}, \mathbb{P})$ . Dans une urne sont placées deux boules, une noire N et une rouge R. On effectue une suite de tirages d'une boule au hasard selon les modalités suivantes :

- si la boule tirée est noire : on ne la remet pas dans l'urne (et la boule rouge sera nécessairement tirée au prochain tirage),
- si la boule tirée est rouge : on remet l'urne dans l'état initial, avec 2 boules, la noire et la rouge.

Pour  $n \in \mathbb{N}^*$ , on note :  $N_n$  (respectivement  $R_n$ ) l'événement : « la n-ième boule tirée est noire (respectivement rouge) ».

- 1. Écrire un script Python qui modélise le tirage des r premières boules obtenues  $(r \ge 1)$ .
- 2. Pour  $n \ge 1$ , on pose  $a_n = \mathbb{P}(N_n)$  et  $b_n = \mathbb{P}(R_n)$ .
  - a) Exprimer  $a_{n+1}$  et  $b_{n+1}$  en fonction de  $a_n$  et  $b_n$ .
  - b) En déduire que  $b_{n+2} = \frac{1}{2}b_{n+1} + \frac{1}{2}b_n$  ainsi que les expressions de  $a_n$  et  $b_n$  en fonction de n.
- 3. On note X la variable aléatoire égale au rang de la première boule noire tirée. Quelle est la loi de X? Calculer son espérance et sa variance.
- 4. Soit n un entier donné supérieur ou égal à 1. On note Z la variable aléatoire égale au nombre de boules noires tirées lors des n tirages consécutifs.
  - a) Calculer l'intervalle  $\llbracket m_n, M_n \rrbracket$  des valeurs prises par Z. Calculer ensuite  $\mathbb{P}(Z=m_n)$  et  $\mathbb{P}(Z=M_n)$ .
  - b) On note  $b_{n,k}$  le nombre de tirages de n boules dont exactement k sont noires et se terminent par le tirage d'une boule rouge (l'événement  $R_n$  est réalisé). Exprimer successivement la probabilité  $\mathbb{P}(R_n \cap [Z=k])$  puis la probabilité  $\mathbb{P}(R_n)$  en fonction des  $b_{n,k}$ .