

ESSEC

Filière B/L

Problème (Enoncé)

La première partie de ce problème détermine quelques propriétés des matrices d'Ehrenfest.

La seconde partie étudie un modèle de diffusion de particules à travers une membrane poreuse.

Dans ce problème, n est un entier naturel supérieur ou égal à 2.

On désigne par A_n la matrice carrée de $\mathcal{M}_{n+1}(\mathbb{R})$ définie par :

$$A_{n} = \begin{pmatrix} 0 & n & 0 & \cdots & \cdots & 0 \\ 1 & 0 & n-1 & \cdots & \cdots & 0 \\ 0 & 2 & 0 & \ddots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & \ddots & \ddots & 1 \\ 0 & \cdots & \cdots & \cdots & n & 0 \end{pmatrix}$$

Plus formellement, pour $1 \le i \le n+1$ et $1 \le j \le n+1$, le terme situé sur la ligne i et la colonne j de A_n est:

$$\begin{cases} n-i+1 & \text{si } j=i+1\\ i-1 & \text{si } i=j+1\\ 0 & \text{sinon} \end{cases}$$

Enfin, on pose $A'_n = \frac{1}{n} A_n$ et $B_n = {}^t A_n$ où ${}^t A_n$ désigne la matrice transposée de A_n .

Par commodité, on confondra matrice colonne à k lignes et vecteur de \mathbb{R}^k

Partie I - Matrice d'Ehrenfest

- Déterminer les éléments propres (valeurs propres et espaces propres) de la matrice B_2 . Cette matrice est-elle diagonalisable?
- Déterminer B_2^p pour p entier naturel.
- En utilisant B_2 , justifier que A_2 est diagonalisable et donner ses éléments propres.

On va généraliser les résultats obtenus pour
$$n=2$$
 en ce qui concerne les éléments propres de B_n .
Pour x réel, on pose $\operatorname{ch}(x) = \frac{\exp(x) + \exp(-x)}{2}$ et $\operatorname{sh}(x) = \frac{\exp(x) - \exp(-x)}{2}$.

On admet les résultats suivants, concernant les fonctions chet sh

- pour tout réel x, $\exp(x) = \operatorname{ch}(x) + \operatorname{sh}(x)$
- pour tout réel x, $ch^2(x) sh^2(x) = 1$
- les fonctions chet sh sont dérivables sur \mathbb{R} et $\mathrm{ch}' = \mathrm{sh}$ et $\mathrm{sh}' = \mathrm{ch}$.

Pour p entier naturel avec $0 \le p \le n$ et x réel, on pose $f_p(x) = \operatorname{sh}^p(x) \operatorname{ch}^{n-p}(x)$ et on désigne par F_n le sous-espace vectoriel de l'espace vectoriel $\mathbb{R}^{\mathbb{R}}$ des applications de \mathbb{R} dans lui-même, engendré par la famille $\mathscr{B} = (f_0, f_1, \dots, f_n)$.

Pour p entier relatif, on définit la fonction e_p sur \mathbb{R} par $e_p(x) = \exp(px)$.

4. Montrer que la famille \mathscr{B} est une base de F_n .

- 5. Soit k un entier vérifiant $0 \le 2k \le n$.
 - a) En remarquant que pour x réel, $\exp((n-2k)x) = (\cosh^2(x) \sinh^2(x))^k (\cosh(x) + \sinh(x))^{n-2k}$, montrer que e_{n-2k} est dans F_n .
 - b) Déterminer les coordonnées de e_n et de e_{n-2} dans la base \mathscr{B} .
 - c) Montrer que e_{2k-n} est dans F_n .
- 6. Pour j entier naturel avec $0 \le j \le n$, exprimer la dérivée f'_j en fonction de vecteurs de la famille (f_0, f_1, \ldots, f_n) .
- 7. Montrer que l'application $u_n: f \mapsto f'$ réalise un endomorphisme de F_n et donner la matrice de u_n dans la base \mathscr{B} .
- 8. Soit λ un réel. Quelles sont les fonctions f dérivables sur \mathbb{R} vérifiant $f' = \lambda f$? (on pourra calculer la dérivée de $x \mapsto \exp(-\lambda x) f(x)$).
- 9. Montrer que les valeurs propres de u_n sont les entiers de l'ensemble

$$\{\pm n, \pm (n-2), \dots, \pm (n-2p)\}$$

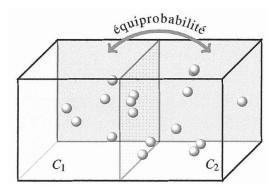
où $p = \lfloor \frac{n}{2} \rfloor$ (partie entière de $\frac{n}{2}$) et qu'un vecteur propre associé à la valeur propre $\varepsilon(n-2k)$ pour $0 \le k \le p$ et $\varepsilon \in \{-1,1\}$ est l'application $e_{\varepsilon(n-2k)}$.

- 10. La matrice B_n est-elle diagonalisable?
- 11. Montrer que $\frac{1}{2^n} \begin{pmatrix} 1 & \binom{n}{1} & \binom{n}{2} & \cdots & \binom{n}{n-1} & 1 \end{pmatrix}$ est l'unique matrice $L = \begin{pmatrix} \ell_1 & \ell_2 & \cdots & \ell_{n+1} \end{pmatrix}$ telle que :

$$\sum_{i=1}^{n+1} \ell_i = 1 \quad \text{et } LA'_n = L$$

Partie II - Diffusion de particules

Une boîte contient n particules; cette boîte est séparée en deux boîtes notées C_1 et C_2 par une membrane poreuse. On modélise le passage des particules d'une boîte à l'autre de la façon suivante. À chaque instant entier, on choisit une des n particules avec équiprobabilité et on la transfère dans l'autre boîte. Les tirages sont supposés indépendants.



On admet qu'il existe un espace probabilisé $\mathscr{E} = (\Omega, \mathscr{A}, \mathbb{P})$ tel que pour tout p de \mathbb{N} , le nombre de particules dans la boîte C_1 à l'instant p définit une variable aléatoire X_p sur \mathscr{E} .

Si A est un événement élément de \mathscr{A} , si $0 \le k \le n$ et si $\mathbb{P}(X_p = k) = 0$, on pose par convention $\mathbb{P}_{[X_p = k]}(A) = 0$. Avec cette convention, on a la formule que l'on pourra admettre :

$$\mathbb{P}(A) = \sum_{k=0}^{n} \mathbb{P}_{[X_p = k]}(A) \, \mathbb{P}(X_p = k)$$

L'espérance d'une variable aléatoire X discrète finie sera notée $\mathbb{E}(X)$. On note enfin, pour p dans \mathbb{N} , L_p la matrice ligne :

$$L_p = (\mathbb{P}(X_p = 0) \quad \mathbb{P}(X_p = 1) \quad \cdots \quad \mathbb{P}(X_p = n))$$

- 12. Déterminer L_{p+1} en fonction de L_p en utilisant la matrice A'_n et en déduire L_p en fonction de A'_n , p et L_0 .
- 13. On suppose dans cette question que X_0 suit une loi binomiale de paramètres n et $\frac{1}{2}$. Quelle est la loi suivie par X_p ? Quelle est son espérance et sa variance? On revient au cas général.
- 14. Montrer que pour tout p entier naturel :

$$\mathbb{E}(X_{p+1}) = \left(\frac{n-2}{n}\right) \mathbb{E}(X_p) + 1$$

et en déduire l'espérance de X_p en fonction de n, p et $\mathbb{E}(X_0)$ (on pourra étudier $\mathbb{E}(X_p) - \frac{n}{2}$).

- 15. Quelle est la limite de $\mathbb{E}(X_p)$ lorsque p tend vers $+\infty$? Ce résultat vous semble-t-il conforme à l'intuition?
- 16. Une modélisation physique stipule que la pression P_p dans la boîte C_1 à l'instant p est de l'ordre de $P_p = \mathbb{E}\left(\frac{X_p}{n}\right)$.

On note t la fréquence de transitions par seconde et on suppose que p = nt (temps mis pour effectuer n transitions).

Exprimer la limite de P_{nt} lorsque n tend vers $+\infty$ en fonction de t et de P_0 seulement. Ceci établit une loi de refroidissement due à Isaac Newton.