

EML 2014

Voie S

Problème 2 (Enoncé)

Dans tout le problème, n désigne un entier naturel supérieur ou égal à 2.

Pour tout i de [1, n], on note V_i la matrice colonne de $\mathcal{M}_{n,1}(\mathbb{R})$ dont tous les coefficients sont nuls, sauf celui de la i-ième ligne qui est égal à 1. On admet que la famille $(V_i)_{i \in [1,n]}$ est une base de $\mathcal{M}_{n,1}(\mathbb{R})$.

Pour tout (i,j) de $[1,n]^2$, on note $E_{i,j} = V_i^{\ t}V_j$.

Ainsi, pour tout (i,j) de $[1,n]^2$, la matrice $E_{i,j}$ est la matrice carrée de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont nuls, sauf celui à l'intersection de la *i*-ième ligne et de la *j*-ième colonne qui est égal à 1. On admet que la famille $(E_{i,j})_{(i,j)\in[1,n]^2}$ est une base de $\mathcal{M}_n(\mathbb{R})$.

On note I_n la matrice identité de $\mathcal{M}_n(\mathbb{R})$.

Soit A une matrice quelconque de $\mathcal{M}_n(\mathbb{R})$ telle que, pour tout λ de \mathbb{R} , $A \neq \lambda I_n$.

On considère l'application Φ_A de $\mathcal{M}_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$ définie par :

$$\forall M \in \mathcal{M}_n(\mathbb{R}), \ \Phi_A(M) = AM - MA$$

Partie I : Quelques généralités

- 1. Montrer que Φ_A est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- 2. Calculer $\Phi_A(I_n)$. L'endomorphisme Φ_A est-il injectif? surjectif?

Partie II : Étude d'un cas particulier

On suppose, dans cette partie seulement, que n=2 et $A=\begin{pmatrix} 1 & 1 \\ 0 & 3 \end{pmatrix}$.

3. Justifier que la matrice A est diagonalisable dans $\mathcal{M}_2(\mathbb{R})$ et donner les valeurs propres de A. On note \mathcal{B} la base de $\mathcal{M}_2(\mathbb{R})$ constituée des quatre matrices suivantes :

$$E_{1,1} = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \end{pmatrix}, \quad E_{1,2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad E_{2,1} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad E_{2,2} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

- 4. Écrire la matrice de Φ_A dans la base \mathcal{B} , puis calculer le rang de cette matrice.
- 5. Déterminer les valeurs propres de Φ_A et montrer que Φ_A est diagonalisable.

Partie III : Étude du cas où $oldsymbol{A}$ est diagonalisable

On suppose, dans cette partie seulement, que la matrice A est diagonalisable dans $\mathcal{M}_n(\mathbb{R})$.

- 6. Montrer que tA est diagonalisable dans $\mathcal{M}_n(\mathbb{R})$ et que A et tA ont les mêmes valeurs propres.
- 7. Soient $X, Y \in \mathcal{M}_n(\mathbb{R})$ tels que X (resp. Y) est un vecteur propre de A (resp. de tA). Montrer que X^tY est un vecteur propre de Φ_A .
- 8. Soient $(X_1, X_2, ..., X_n)$ et $(Y_1, Y_2, ..., Y_n)$ deux bases de $\mathcal{M}_{n,1}(\mathbb{R})$. On note \mathcal{F} la famille $\mathcal{F} = (X_i^t Y_j)_{(i,j) \in [\![1,n]\!]^2}$

Montrer que, pour tout (i,j) de $[1,n]^2$, $V_i^t V_j$ appartient au sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ engendré par \mathcal{F} , et en déduire que la famille \mathcal{F} est une base de $\mathcal{M}_n(\mathbb{R})$.

- 9. Établir que Φ_A est diagonalisable.
- 10. Montrer que l'ensemble des valeurs propres de Φ_A est l'ensemble des différences $\lambda \mu$ lorsque λ et μ décrivent les valeurs propres de A.

Partie IV : Étude d'un sous-espace propre de Φ_A associé à une valeur propre non nulle

Soit λ une valeur propre non nulle de Φ_A et $T \in \mathcal{M}_n(\mathbb{R})$ un vecteur propre associé; on a alors :

$$\Phi_A(T) = \lambda T$$
 et $T \neq 0$

11. À l'aide d'un raisonnement par récurrence, montrer :

$$\forall k \in \mathbb{N}, \ \Phi_A(T^k) = \lambda k T^k$$

- 12. En raisonnant par l'absurde, montrer qu'il existe un entier q de \mathbb{N} tel que : $T^q = 0$ et $q \leq n^2$. On note p l'entier de \mathbb{N}^* tel que $T^p = 0$ et $T^{p-1} \neq 0$.
- 13. Justifier qu'il existe $X \in \mathcal{M}_n(\mathbb{R})$ tel que $T^{p-1}X \neq 0$. Montrer que la famille $(X, TX, \dots, T^{p-1}X)$ est libre dans $\mathcal{M}_n(\mathbb{R})$, et en déduire : $p \leq n$

Partie V : Étude du cas où A est symétrique

On suppose, dans cette partie seulement, que la matrice A est symétrique; il existe donc une matrice $P \in \mathcal{M}_n(\mathbb{R})$ orthogonale telle que $P^{-1}AP$ est diagonale. On note C_1, C_2, \ldots, C_n les colonnes de P. Pour toutes matrices $M = (m_{i,j})_{(i,j) \in [1,n]^2}$ et $N = (n_{i,j})_{(i,j) \in [1,n]^2}$ de $\mathcal{M}_n(\mathbb{R})$, on définit:

$$(M | N) = \sum_{(i,j) \in [1,n]^2} m_{i,j} n_{i,j}$$

- 14. Montrer que l'application $(\cdot | \cdot)$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$
- 15. Montrer: $\forall (M, N) \in \mathcal{M}_n(\mathbb{R})^2$, $(M \mid N) = (M^t N \mid I_n)$.
- 16. Pour tout (i, j) de $[1, n]^2$ calculer tC_iC_j .
- 17. Pour tout (i, j) de $[1, n]^2$, déterminer les coefficients diagonaux de la matrice $C_i^{\ t}C_j$ et en déduire la valeur de $(C_i^{\ t}C_j \mid I_n)$.
- 18. Pour tout (i, j, k, ℓ) de $[1, n]^4$, calculer $(C_i^{\ t}C_i \mid C_k^{\ t}C_\ell)$.
- 19. On considère la famille $\mathcal{G} = (C_i^{\ t}C_j)_{(i,j)\in [\![1,n]\!]^2}$ de $\mathcal{M}_n(\mathbb{R})$

Montrer que \mathcal{G} est une base orthonormée pour le produit scalaire $(\cdot | \cdot)$ de $\mathcal{M}_n(\mathbb{R})$ et que \mathcal{G} est constituée de vecteurs propres de Φ_A .