

HEC

Filière B/L

(Enoncé)

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires définies sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, indépendantes, suivant toutes la loi géométrique de paramètre p, ou p est un réel de]0,1[. On pose : q=1-p. Soit N une variable aléatoire à valeurs dans \mathbb{N}^* , indépendante des variables aléatoires X_n $(n \in \mathbb{N}^*)$.

Pour tout $\omega \in \Omega$, on pose : $Y(\omega) = \sum_{i=1}^{N(\omega)} X_i(\omega)$, et on admet que $Y = \sum_{i=1}^{N} X_i$ est une variable aléatoire

définie sur $(\Omega, \mathcal{A}, \mathbb{P})$. Pour tout $n \in \mathbb{N}^*$, on pose : $S_n = \sum_{i=1}^n X_i$.

On rappelle que pour tout couple d'entiers naturels (n,k), on a : $\binom{n}{k} = \begin{cases} \frac{n!}{k!(n-k)!} & \text{si } k \leq n \\ 0 & \text{sinon} \end{cases}$. De plus, on pourra utiliser, sans justification, la formule (1) suivante :

pour tout couple
$$(r,s) \in \mathbb{N}^2$$
 avec $r \leqslant s$, $\sum_{j=r}^{s} {j \choose k} = {s+1 \choose r+1}$

1. Montrer que la loi de S_2 est donnée par $S_2(\Omega) = [2, +\infty[$, et pour tout $k \geqslant 2$:

$$\mathbb{P}(S_2 = k) = (k-1) p^2 q^{k-2}$$

- 2. Déterminer pour tout entier n supérieur ou égal à 2, la loi de X_1 conditionellement à l'événement $[S_2 = n]$.
- 3. a) Déterminer $S_n(\Omega)$.
 - b) En utilisant la formule (1) et à l'aide d'une démonstration par récurrence sur n, montrer que :

pour tout
$$k \in S_n(\Omega)$$
, $\mathbb{P}(S_n = k) = \binom{k-1}{n-1} p^n q^{k-n}$

4. a) En utilisant le fait que S_{n-1} est une variable aléatoire, établir l'égalité :

$$\sum_{k=n}^{+\infty} {k-2 \choose n-2} q^{k-n} = \frac{1}{p^{n-1}}$$

b) Vérifier que pour tout entier $n \ge 2$ et tout entier $k \ge n$, on a :

$$\frac{n-1}{k-1} \binom{k-1}{n-1} = \binom{k-2}{n-2}$$

- c) Soit R_n la variable aléatoire définie par : $R_n = \frac{n-1}{S_n-1}$. Montrer que l'espérance de R_n est égale à p.
- 5. a) Déterminer $Y(\Omega)$.
 - b) Pour tout couple $(k, n) \in \mathbb{N}^* \times \mathbb{N}^*$, montrer que :

$$\mathbb{P}([Y=k] \cap [N=n]) = \mathbb{P}(S_n = k) \times \mathbb{P}(N=n)$$

- c) Donner pour tout couple $(k, n) \in \mathbb{N}^* \times \mathbb{N}^*$ tel que k < n, la valeur de $\mathbb{P}([Y = k] \cap [N = n])$.
- d) Déduire des que stions précédentes que pour tout $k\in\mathbb{N}^*$:

$$\mathbb{P}(Y = k) = \sum_{n=1}^{k} \mathbb{P}(S_n = k) \times \mathbb{P}(N = n)$$

- 6. On suppose dans cette question que N suit la loi géométrique de paramètre p. Montrer que Y suit la loi géométrique de paramètre p^2 .
- 7. On suppose réciproquement que Y suit la loi géométrique de paramètre p^2 .
 - a) Montrer que $\mathbb{P}(N=1) = p$.
 - b) Montrer également que $\mathbb{P}(N=2) = pq$.
 - c) À l'aide d'une démonstration par récurrence, montrer que N suit la loi géométrique de paramètre p.