

EML

Filière ECE

(Enoncé)

Soit $a \in \mathbb{R}_+^*$.

- 1. Montrer que, pour tout entier n tel que $n \ge 0$, l'intégrale $I_n = \int_0^{+\infty} x^n e^{-\frac{x^2}{2a^2}} dx$ est convergente.
- 2. a) Rappeler une densité d'une variable aléatoire qui suit la loi normale d'espérance nulle et de variance a^2 .

En déduire : $I_0 = a\sqrt{\frac{\pi}{2}}$.

- b) Calculer la dérivée de l'application $\varphi : \mathbb{R} \to \mathbb{R}$ définie, pour tout $x \in \mathbb{R}$, par $: \varphi(x) = e^{-\frac{x^2}{2a^2}}$. En déduire $: I_1 = a^2$.
- 3. a) Montrer, pour tout entier n tel que $n \ge 2$ et pour tout $t \in [0, +\infty[$:

$$\int_0^t x^n e^{-\frac{x^2}{2a^2}} dx = -a^2 t^{n-1} e^{-\frac{t^2}{2a^2}} + (n-1) a^2 \int_0^t x^{n-2} e^{-\frac{x^2}{2a^2}} dx$$

- b) En déduire, pour tout entier n tel que $n \ge 2$: $I_n = (n-1) a^2 I_{n-2}$.
- c) Calculer I_2 et I_3 .

On considère l'application $g_a: \mathbb{R} \longrightarrow \mathbb{R}$ définie, pour tout $x \in \mathbb{R}$, par :

$$g_a(x) = \begin{cases} 0 & \text{si } x \leq 0\\ \frac{x}{a^2} e^{-\frac{x^2}{2a^2}} & \text{si } x > 0 \end{cases}$$

- 4. Montrer que g_a est une densité. On considère une variable aléatoire X admettant g_a comme densité.
- 5. Déterminer la fonction de répartition de la variable aléatoire X.
- 6. Montrer que la variable aléatoire X admet une espérance $\mathbb{E}(X)$ et que $\mathbb{E}(X) = a\sqrt{\frac{\pi}{2}}$.
- 7. Montrer que la variable aléatoire X admet une variance $\mathbb{V}(X)$ et calculer $\mathbb{V}(X)$.
- 8. a) On considère une variable aléatoire U suivant la loi uniforme sur l'intervalle]0,1]. Montrer que la variable aléatoire $Z=a\sqrt{-2\ln(U)}$ suit la même loi que la variable aléatoire X.
 - b) En déduire un programme en langage Python simulant la variable aléatoire X, le réel a strictement positif étant entré par l'utilisateur.

Soit un entier n tel que $n \ge 2$.

On considère n variables aléatoires indépendantes X_1, X_2, \ldots, X_n suivant toutes la même loi que la variable aléatoire X.

- 9. On considère la variable aléatoire $A_n = \frac{\sqrt{2}}{n\sqrt{\pi}} (X_1 + X_2 + \dots + X_n)$.
 - a) Montrer que la variable aléatoire A_n est un estimateur de a et calculer son espérance.
 - b) Déterminer la variance de l'estimateur A_n .

On définit la variable aléatoire $M_n = \min(X_1, X_2, \dots, X_n)$. On a ainsi :

$$\forall t \in \mathbb{R}, [M_n > t] = [X_1 > t] \cap [X_2 > t] \cap \cdots \cap [X_n > t]$$

- 10. a) Montrer, pour tout $t \in [0, +\infty[: \mathbb{P}(M_n > t) = e^{-\frac{nt^2}{2a^2}}]$.
 - b) En déduire la fonction de répartition de M_n .
 - c) Montrer que M_n est une variable aléatoire à densité, admettant g_b comme densité avec $b = \frac{a}{\sqrt{n}}$.
 - d) Montrer que la variable aléatoire M_n admet une espérance $\mathbb{E}(M_n)$ et une variance $\mathbb{V}(M_n)$. Calculer $\mathbb{E}(M_n)$ et $\mathbb{V}(M_n)$.
- 11. a) En déduire un estimateur B_n de a, de la forme $\lambda_n M_n$ avec $\lambda_n \in \mathbb{R}$, et dont l'espérance est égale à a.
 - b) Déterminer la variance de l'estimateur B_n .