

ESCP 2004

Filière ECE

Exercice (Énoncé)

On désigne par E l'espace vectoriel \mathbb{R}^6 et par \mathcal{B} sa base canonique : $\mathcal{B} = (e_1, e_2, e_3, e_4, e_5, e_6)$. On pose $\mathcal{B}_1 = (e_1, e_2, e_3)$ et $\mathcal{B}_2 = (e_4, e_5, e_6)$, et on désigne respectivement par E_1 et E_2 les sous-espaces vectoriels de E engendrés par \mathcal{B}_1 et \mathcal{B}_2 .

Enfin, A est la matrice carrée d'ordre 3 à coefficients réels suivante :

$$A = \begin{pmatrix} 0 & 2 & 1 \\ 2 & 0 & 1 \\ -2 & 2 & -1 \end{pmatrix}$$

et on note u l'endomorphisme de E_1 dont la matrice dans la base \mathcal{B}_1 est A.

- 1. Déterminer les valeurs propres de M ainsi que ses sous-espaces propres.
- 2. Soit f l'application linéaire de E_1 vers E_2 définie par : $f(e_1) = e_4$, $f(e_2) = e_5$ et $f(e_3) = e_6$. Montrer que f est un isomorphisme et déterminer la matrice de son isomorphisme réciproque f^{-1} relativement aux bases \mathcal{B}_2 et \mathcal{B}_1 .
- 3. a) Montrer que, si (x_1, x_2) est un élément de $E_1 \times E_2$ vérifiant l'égalité $x_1 + x_2 = 0$, les vecteurs x_1 et x_2 sont nuls.
 - b) En déduire que, si (x_1, x_2) et (y_1, y_2) sont deux éléments de $E_1 \times E_2$ tels que $x_1 + x_2 = y_1 + y_2$, alors on a : $x_1 = y_1$ et $x_2 = y_2$.
- 4. Pour tout vecteur x de E dont les coordonnées dans la base \mathcal{B} sont $(\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6)$, on pose :

$$\begin{cases} x_1 = \lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 \\ x_2 = \lambda_4 e_4 + \lambda_5 e_5 + \lambda_6 e_6 \end{cases}$$
 et $F(x) = u(x_1) + f(x_1) + f^{-1}(x_2)$

- a) Prouver que l'application F qui à tout vecteur x de E associe le vecteur F(x), est un endomorphisme de E.
- b) Déterminer le noyau de F et en déduire que F est un bijectif.
- c) Montrer que la matrice M de F dans la base \mathcal{B} peut s'écrire sous la forme :

$$M = \begin{pmatrix} 0 & 2 & 1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 & 1 & 0 \\ -2 & 2 & -1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

5. On suppose, dans cette question, que μ est une valeur propre de M et que X est un vecteur propre associé à μ .

On note x le vecteur de E dont X est la colonne des coordonnées dans la base \mathcal{B} et on définit les vecteurs x_1 de E_1 et x_2 de E_2 comme dans la question précédente.

On note alors X_1 la colonne des coordonnées de x_1 dans la base \mathcal{B}_1 et X_2 la colonne des coordonnées de x_2 dans la base \mathcal{B}_2 .

- a) Justifier que la valeur propre μ n'est pas nulle.
- b) Utiliser les résultats de la question 3 pour prouver que les vecteurs x_1 et x_2 sont tous les deux non nuls et que X_1 est un vecteur propre de A associé à la valeur propre $\mu \frac{1}{\mu}$. On pourra remarquer que l'égalité $MX = \mu X$ équivaut à l'égalité $f(x) = \mu x$.
- 6. Étudier la fonction φ définie sur \mathbb{R}^* par $\varphi(x) = x \frac{1}{x}$.
- 7. On suppose, dans cette question, que λ est une valeur propre de A et que X_1 est un vecteur propre de A associé à λ .
 - a) Montrer que l'équation d'inconnue μ suivante : $\lambda = \mu \frac{1}{\mu}$ admet deux solutions distinctes μ_1 et μ_2 .
 - b) Montrer que μ_1 et μ_2 sont des valeurs propres de M. Donner, en fonction de X_1 , un vecteur propre de M associé à μ_1 et un vecteur propre de M associé à μ_2 .
- 8. La matrice M est-elle diagonalisable?